日期问题是一种常考问题,但同时也是让许多考生“闻风丧胆”的一种题型,如何去破解这个难题,也成了许多老师关注的点。其实,仔细分析不难发现,许多考生之所以有这个错误的感知,是因为他们对于日期问题并没有了解到位,日期问题的核心问题没有掌握到位,只是人为的去预估它的难度,增加它的神秘度度,最终让日期问题披上了一层“难”的透明袈裟。为了更好的解决这个问题,也为了让更多的考生去掌握更多类型的题目,在此海南华图教育对日期问题中的其中一类求星期数的问题进行简单梳理。
一.方法概述
所谓日期问题,就是指题目描述中涉及到不同的具体日期,同时会以某个情景为载体,往往结合星期来考察。根据定义可知,要想更好的解决日期问题,就需要大家对于日期与星期的基本知识有所了解,并且对于日期和星期之间要建立起桥梁。日期基本知识主要涉及到年、月,具体来说:年分为平年(365天)、闰年(366天),闰年具体判定方法为非整百年能够被4整除,整百年能够被400整除;月分为大月(31天)、小月(30天)和2月(平年28天,闰年29天),其中1月、3月、5月、7月、8月、10月和12月为大月,4月、6月、9月和11月为小月。真正在考察日期问题时往往结合星期来考查,一般题干会告诉其中某天的星期数,求其余某天的星期数。结合实际知,一周7天,即过7天或7天的整倍数后星期数回归到原来位置,若有余数,则向后推余数天。当然具体在做题目的时候可以根据题干的具体描述去细分:日期相近,直接去求过几天,除以循环数,分析余数;日期较远,可观察过几月或几年,利用过一个大月推3天(31÷7=4……3),一个小月推2天(30÷7=4……2),2月(28天不变,29天推1天),平年推1天(365÷7=52……1),闰年推2天(366÷7=52……2)的结论去分析题目。
二.一般步骤
通过定义分析可知,一般步骤为:确定时间跨度,求循环数,分析余数。
首先,确定时间跨度。一般情况下,根据所给两个日期,确定跨度长短。
其次,求循环数,分析余数。跨度小,则直接利用时间差求所过天数a,利用公式a÷7求循环数及余数;跨度大,则分析过了几个大月、小月、2月(分平闰年)、平年数或闰年数,结合已知结论,分析余数。
例1:已知2010年8月11日星期三,那么2010年8月26日是星期几?
A.四 B.三 C.五 D.一
【参考解析】分析题干可知,题干中涉及到两个日期跨度较小,则直接计算时间差,为26-11=15,则过了15天,具体循环数及余数为:15÷7=2……1,向后推一天,星期四,选择A项。
例2:已知2019年6月1日星期六,那么2019年12月6日是星期几?
A.一 B.三 C.五 D.日
【参考解析】分析题干可知,题干中涉及到两个日期跨度较大,过了3个大月(7月、8月、10月),3个小月(6月、9月、11月)之后(到12月1日),再过5天,具体分析可知,向后推了3×3+3×2+5=20天,分析余数可知:20÷7=2……6,向后推6天,星期五,选择C项。
综上所述,无论什么样跨度的日期星期数问题,只需要关注时间跨度,分析余数,答案自然就可迎刃而解。